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ABSTRACT: A new model based on Eyring’s absolute
rate theory for the prediction of solvent activities in binary
polymer solutions is presented. This model requires exper-
imental viscosity and density data. The model results for
various solutions of poly(ethylene glycol)s with molecular
weights of 200, 300, and 6000 in water and for poly(pro-
pylene glycol) with a molecular weight of 2025 in ethanol are

compared with experimental data at different temperatures
and concentrations. There is good agreement between the
calculated and experimental results, and the overall average
mean relative deviation of the model is less than 1.2%. © 2005
Wiley Periodicals, Inc. J Appl Polym Sci 96: 1059–1063, 2005
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INTRODUCTION

The activity is one of the most important thermody-
namic properties of solutions and can be used for
calculating many other properties. Many studies have
been conducted to predict the thermodynamic prop-
erties of polymer solutions with various models, such
as noncompressible models, compressible lattice mod-
els, off-lattice models, and models based on a gener-
alized van der Waals partition function.1 In the first
group, we can mention the Flory–Huggins theory.2,3

In compressible models, the concept of free volume
has been used to consider the phase behavior of poly-
mer mixtures. Its assumptions are similar to those of
the Flory–Huggins theory, and the free volume is
assumed to be due to unoccupied sites in the lattice. In
this respect, the works of Costas and Sanctuary,4 High
and Danner,5 Panayioutou and Vera,6 and Sanchez
and Lacomb7 are worth mentioning. In off-lattice
models, the continuity of polymer configurations is
the essential assumption. Therefore, a polymer chain
is considered to consist of athermal hard spheres that
are connected together.8,9 In the fourth class of mod-
els, the equation of state based on the van der Waals
equation can be mentioned. The theory of perturbed
hard chains was obtained on this basis.10,11

In this work, a new thermodynamic model based on
Eyring’s absolute rate theory is presented for calculating

the solvent activities in binary polymer solutions with
density and viscosity data. The model results are in good
agreement with the experimental data. These experi-
mental data were taken from the literature or were mea-
sured by us with vapor pressure osmometry (VPO).

EXPERIMENTAL

Poly(propylene glycol) (PPG), with a number-average
molecular weight of 2025, was acquired from Reidel-
de Haen (Seelze, Germany). Ethanol (�99.8%) as a
solvent and urea as a calibration substance for the
VPO apparatus were obtained from Merck (Darm-
stadt, Germany). The solutions were prepared by
mass with an analytical balance with �0.1-mg accu-
racy. A vapor pressure osmometer from Knauer (Ber-
lin, Germany) was used for measuring the activities of
ethanol in the PPG solutions. The measuring method
has been reported elsewhere.12,13 The results obtained
at 318.2 and 328.2 K for 10, 20, 30, and 40 wt %
polymer concentrations are reported in Table I.

MODELING

According to Eyring’s viscosity model, the viscosity of
a liquid solution can be calculated as follows:14,15

ln���� � �
i

xi ln��i�i� �
g*E

RT (1)

where � and � are the viscosity and molar volume of the
solution, respectively; xi is the molar fraction of compo-
nent i in the mixture; �i and �i are the viscosity and molar
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volume of pure component i, respectively; R is the gas
constant; T is the absolute temperature; and g*E is the
excess Gibbs energy of viscous flow required to move
the fluid particles from a stable state to an activated state.
An equivalence can be assumed between the excess
Gibbs free energy of activation for flow (g*E) and the
equilibrium excess Gibbs free energy of mixing (gE):16

gE

RT � ln���� � �
i

xi ln��i�i� (2)

On the right side of this equation, the first term is related
to the real viscosity of the solution, and the second term
is related to the ideal viscosity of the solution. In this
work, we introduce dimensionless terms instead of the
real and ideal viscosities as follows:

gE

RT � � ��

�R�R
� � �

i

xi��i�i�

�R�R
(3)

where �R and �R are the viscosity and molar volume of
a reference component, respectively. We chose the
polymer (component 2) as a reference component:

gE

RT � � ��

�2�2
� � �

i�1

2 xi��i�i�

�2�2
(4)

Equation (4) can satisfy the boundary-limiting condi-
tions; that is, for x1 � 0 (or x2 � 1) and x2 � 0 (or x1
� 0), gE is 0.

To use eq. (4) to calculate the excess Gibbs free energy,
we need the viscosity and molar volume of the solution

TABLE II
Activity of Water in Aqueous Solutions of PEG 200 (2) at

Various Temperatures and Concentrations

w2 a1
exp19 a1

cal RD

T � 313.2 K
0.8991 — 0.7947 —
0.7120 0.7422 0.8248 11.129
0.6411 0.7916 0.8301 4.8636
0.5197 0.8790 0.8638 �1.7292
0.4481 0.9125 0.8930 �3.1370
0.2220 0.9706 0.9823 1.2054
T � 333.2 K
0.8375 — 0.8244 —
0.7328 0.7508 0.8319 10.8018
0.5586 0.8753 0.8640 �1.2910
0.4670 0.9154 0.8966 �2.0537
0.3828 0.9350 0.9279 �0.7593
0.2329 0.9728 0.9705 �0.2364
0.1493 0.9849 0.9824 �0.2538

TABLE III
Activities of Water in Aqueous Solutions of PEG 300 (2)

at Various Temperatures and Concentrations

w2 a1
exp12 acal RDa

T � 308.2 K
0.3926 0.9410 0.9479 0.7333
0.2987 0.9643 0.9616 �0.2800
0.1998 0.9815 0.9780 �0.3566
0.1080 0.9917 0.9922 0.0504
T � 318.2 K
0.3926 0.9458 0.9443 �0.1586
0.2987 0.9670 0.9586 �0.8687
0.1998 0.9821 0.9759 �0.9613
0.1080 0.9915 0.9907 �0.0807
T � 328.2 K
0.3926 0.9499 0.9547 0.5053
0.2987 0.9690 0.9625 �0.6708
0.1998 0.9829 0.9778 �0.5189
0.1080 0.9919 0.9947 0.2823
T � 338.2 K
0.3926 0.9533 0.9605 0.7553
0.2987 0.9707 0.9646 �0.6284
0.1998 0.9829 0.9775 �0.5494
0.1080 0.9919 0.9936 0.1714

a RD � 100 � (acal � aexp)/a1
exp.

TABLE IV
Activity of Water in Aqueous Solutions of PEG 6000 (2)

at Various Temperatures and Concentrations

w2 a1
exp12 a1

cal RD

T � 308.2 K
0.3552 — 0.9606 —
0.1974 0.9961 0.9918 �0.4317
0.0982 0.9992 0.9990 �0.0200
0.0601 0.9996 0.9994 �0.0200
0.0399 0.9998 0.9995 �0.0300
T � 318.2 K
0.3552 — 0.9600 —
0.1974 0.9960 0.9912 �0.4819
0.0982 0.9986 0.9990 0.0400
0.0601 0.9993 0.9996 0.0300
0.0399 0.9998 0.9998 0.0000
T � 328.2 K
0.3552 — 0.9615 —
0.1974 0.9973 0.9914 �0.5916
0.0982 0.9995 0.9988 �0.0700
0.0601 0.9998 0.9993 �0.0500
0.0399 0.9999 0.9995 �0.0400
T � 338.2 K
0.3552 — 0.9616 —
0.1974 0.9977 0.9910 �0.6715
0.0982 0.9995 0.9986 �0.0900
0.0601 0.9997 0.9992 �0.0500
0.0399 0.9998 0.9994 �0.0400

TABLE I
Measured Activities of Ethanol in Ethanol (1)–PPG 2025

(2) Solutions at 318.2 and 328.2 K

w2 318.2 K 328.2 K

0.1000 0.9960 0.9971
0.2000 0.9923 0.9941
0.3000 0.9851 0.9901
0.4000 0.9799 0.9844
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and pure components 1 and 2. The density and viscosity
of the solution used to verify this model were measured
and fitted by second- and third-order polynomial equa-
tions, respectivily.17 By placing these equations into eq.
(4), we obtained the following relation:

gE

RT � � �a � bw2 � cw2
2� �a� � b�w2 � c�w2

2 � d�w2
3�

�2�2
�

� �x1�1�1

�2�2
� � �x2�2�2

�2�2
� (5)

where w2 is the mass fraction of the polymer and a, b,
c, a�, b�, c�, and d� are adjustable parameters. The
values of these parameters are given in the appendix
for the considered systems. The average relative devi-
ation (RD) of the viscosity and density correlations are
reported in a previous work.17

According to the principles of classical thermody-
namics, the following relations can be written:18

RT ln �1 � gE � �1 � x1�
�gE

�x1
(6)

a1 � x1�1 (7)

where �1 and a1 are the activity coefficient and activity
of the solvent, respectively.

Using eqs. (5)–(7), we can calculate the activity of a
solvent in binary polymer mixtures.

Figure 1 Activity of water in H2O (1)–PEG 200 (2) solutions
at 333.2 K: (Œ) experimental data at 333.2 K19 and (—) model
results.

Figure 2 Activity of water in H2O (1)–PEG 300 (2) solutions
at 308.2 K: (Œ) experimental data at 308.2 K12 and (—) model
results.

Figure 3 Activity of water in H2O (1)–PEG 6000 (2) solu-
tions at 328.2 K: (Œ) experimental data at 328.2 K12 and (—)
model results.

TABLE V
Activity of Ethanol (1) in PPG 2025 (2) Solutions at

Various Temperatures and Concentrations

w2 a1
exp a1

cal RD

T � 318.2 K
0.1000 0.9960 0.9932 �0.2811
0.2000 0.9923 0.9962 �0.3915
0.3000 0.9851 0.9783 �0.6903
0.4000 0.9799 0.9415 �4.0876
T � 328.2 K
0.1000 0.9971 0.9933 �0.3811
0.2000 0.9941 0.9961 0.2012
0.3000 0.9901 0.9778 �1.2423
0.4000 0.9844 0.9392 �4.5916
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RESULTS AND DISCUSSION

The solvent activities have been determined with
the proposed model and compared with experimen-
tal data for aqueous solutions of poly(ethylene gly-
col) (PEG; 200, 300, and 6000) and PPG 2025 solu-
tions in ethanol at various temperatures and con-
centrations. The model performance has been
evaluated through a comparison of the calculated
(a1

cal) and experimental (a1
exp) activity values in terms

of the RD percentage. The a1
cal, a1

exp, and RD values
are reported in Tables II–V for the studied systems.
The overall average mean RD of the model is 1.17%.
Also, some calculated results are shown in Figures
1– 4. The results show that the proposed model is
reliable for the prediction of solvent activities of
binary polymer solutions with viscosity and density
data.
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APPENDIX
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Figure 4 Activity of ethanol in C2H5OH (1)–PPG 2025 (2)
solutions at 328.2 K: (Œ) experimental data at 328.2 K (mea-
sured in this work) and (—) model results.

TABLE A. II
Parameters of Eq. (5) for Various Aqueous Solutions
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